Evolution of energy in flow driven by rising bubbles
نویسندگان
چکیده
منابع مشابه
Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method
Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...
متن کاملGrowing bubbles rising in line
Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is b...
متن کاملDrag Reduction by Surfactant Solutions in Gravity Driven Flow Systems
Efflux time measurements are carried out for gravity draining of a liquid from a large cylindrical tank (where the flow is essentially laminar) through single exit pipe in the absence and presence of Cetyl Pyridinium Chloride (CPC) surfactant solutions. The variables considered are initial height of liquid in the tank, dia. of tank, length of the exit pipe and concentration of surfactant. T...
متن کاملMigration and deformation of bubbles rising in a wall-bounded shear flow at finite Reynolds number
The quasi-steady migration and deformation of bubbles rising in a wall-bounded linear shear flow are investigated experimentally in the low-but-finite-Reynolds-number regime. A travelling optical device that follows the bubble is used for this purpose. This apparatus allows us to determine accurately the bubble radius, contour and rising speed, together with the distance between the bubble and ...
متن کاملNonlinear Photon Bubbles Driven by Buoyancy
We derive an analytic model for nonlinear “photon bubble” wave trains driven by buoyancy forces in magnetized, radiation pressure-dominated atmospheres. Continuous, periodic wave solutions exist when radiative diffusion is slow compared to the dynamical timescale of the atmosphere. We identify these waves with the saturation of a linear instability discovered by Arons — therefore, these wave tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2009
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.79.066317